Abstract
The effect of stress state on high-temperature deformation of fine-grained aluminum–magnesium alloy AA5083 sheet is investigated over a range of temperatures and strain rates for which the grain-boundary-sliding and solute-drag creep mechanisms govern plastic flow. Experimental data from uniaxial tension and biaxial tension are used in conjunction with finite-element-method simulations to examine the role of stress state. Three different material constitutive models derived from uniaxial tensile data are used to simulate bulge-forming experiments. Comparison of simulation results with bulge-forming data indicates that stress state affects grain-boundary-sliding creep by increasing creep rate as hydrostatic stress increases. Thus, creep deformation is faster under biaxial tension than under uniaxial tension for a constant effective stress. No effect of stress state is observed for solute-drag creep. A new material model that accounts for the effect of stress state on grain-boundary-sliding creep is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.