Abstract

The dynamics of small, heavy, spherical particles are investigated in an analytical model of the stretched counterrotating streamwise braid vortices commonly found in three-dimensionally evolving mixing layers. The flow field consists of two superimposed rows of Stuart vortices of opposite sign, with an additional two-dimensional strain field. The particle dynamics are determined by a balance of inertial, gravitational, and viscous drag forces, i.e., the dimensionless Stokes and Froude numbers, St and Fr, as well as by the dimensionless strain rate, and the Stuart vortex family parameter. Equilibrium points for the particles, as well as their stability criteria, are determined analytically, both in the absence and in the presence of gravity, and for different orientations of the gravity vector. In the absence of gravity, accumulation of low St particles can occur at the center of the braid vortices. An analytical expression for the critical particle diameter, below which accumulation is possible, is derived. The presence of gravity can lead to the emergence of multiple equilibrium points, whose stability properties depend on their locations. For a horizontal mixing layer flow and strong gravity effects, unconditional accumulation can occur midway between the streamwise braid vortices in the upwelling regions. Conditionally stable accumulation regions exist a short horizontal distance away from the centers of the braid vortices. If the gravity vector lies within the plane of the mixing layer, accumulation points exist only for moderate strengths of gravity. Under these circumstances, conditional accumulation is possible near the streamwise vortex centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.