Abstract
Transverse compression tests on a unidirectional composite were performed under quasi-static and high-rate loading conditions using servo-hydraulic machines as well as a direct impact Hopkinson bar. Aside the expected increase of compressive strength with increasing loading rate, a change of fracture plane orientation was observed. For quasi-static loading conditions, the fracture angle was 54.5°, for high rate-loading conditions this increased to 65°. Assuming a Mohr-Coulomb type of fracture for unidirectional composites under transverse compression loading, the change of fracture plane orientation indicates a rate dependency of the internal friction angle ϕ, which has not previously been reported for composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.