Abstract

AbstractThe tensile strength of poly(methyl methacrylate) (PMMA), polycarbonate (PC), polychlorotrifluoroethylene, and polysulfone was measured in liquid nitrogen over the strain rate range of 2 × 10−4 to 660 min−1. These polymers deformed by crazing which was induced by the liquid nitrogen. The stress versus log strain rate curve was sigmoidal in that its slope increased and then decreased with strain rate. Above a critical strain rate of about 200 min−1, which varied somewhat with the polymer, crazing was not observed with the optical microscope; the behavior became brittle, and the tensile strength became constant. The nonlinear behavior of stress versus log strain rate at low strain rates was associated with a decrease in activation volume with increasing strain rate whereas the nonlinear behavior at high strain rates was associated with an increase in density and decrease in length of the crazes with strain rate. The strain rate effect was the basis for calculating the diffusion coefficient of nitrogen into the polymers at 77°K.The shear deformation mode of PC was measured under compression and under tension. The compressive strength versus log strain rate was linear throughout the entire range giving a compression shear activation volume of 360 Å3. The shear tensile strength of PC varied only slightly with strain rate when compared to the compressive strength. The brittle fracture stress of PMMA, in the absence of crazing, in compression and in tension, did not vary with strain rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call