Abstract

Tensile testing of cast and extruded binary NiAl was performed from 300 to 900 K at strain rates of 1.4 × 10−4 to 1.4 × 10−1 × s−1. The brittle-to-ductile transition temperature (BDTT) was dependent on strain rate, with a three order of magnitude increase in strain rate resulting in approximately a 200 K increase in transition temperature. Regardless of strain rate, at temperatures just above the BDTT the fracture strength increased significantly and the fracture morphology changed from mostly intergranular to predominantly transgranular. It was also determined that the mechanism responsible for the brittle-to-ductile transition in NiAl had an apparent activation energy of approximately 118 kJ/mol. These results support the argument that the mechanism for the brittle-to-ductile transition in NiAl is associated with the onset of a thermally activated deformation process. This process is probably dislocation climb controlled by short circuit diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.