Abstract

In this study, the lubricity of perfect and defective graphene on the gold substrate (Au (111)) has been investigated by using molecular dynamics simulations. The influence of surface morphology as well as the Stone-Wales (SW) defects concentration on the friction of graphene on the gold surface is explored. The SW defects in the range of 0-2.55% are randomly distributed into the graphene. Furthermore, the self-affine fractal method is employed to generate realistic rough surfaces. The effect of the external force, F E , in the range of 0.25-1.0nN, on the drag coefficients is also investigated. It is shown that the friction force slightly depends on the sliding velocity for all systems. We show that by increasing the defect concentration, the lubricity of graphene nano-sheet slightly decreases. Moreover, it is shown that the friction is almost insensitive to the roughness degree, within the range studied. Both of these effects can be rationalized through variations in the real atomic contact area. Graphical abstract By increasing the SW defect concentration of the graphene, the shape of the deformation is different from a sine wave profile, the real contact area, and the friction increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.