Abstract

Metal halide perovskite solar cells that use the inorganic cation Cs have been shown to have better thermal stability than the organic cation containing counterparts, and CsPbI2Br has a more suitable (lower) band gap than CsPbIBr2 as a photovoltaic energy harvesting material. However, increase in iodine content reduces structural stability due to the preference toward the non-perovskite orthorhombic phase when the film is exposed to air. In this work, the effect of varying stoichiometry of CsPbI2Br perovskite on film quality such as the grain size, presence of impurities and nature of impurity grains, photoluminescence, morphology, and elemental distribution are studied. Details on how to vary the stoichiometry during the dual source thermal evaporation process are reported. It is found that the air stability of CsPbI2Br film correlates with the CsBr-to-PbI2 deposition rate ratio, in which the CsBr-rich CsPbI2Br is the most stable upon air exposure, while the stoichiometrically balanced CsPbI2Br perovskit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.