Abstract

AbstractThe fracture toughness of a liquid crystalline epoxy was compared with that of a standard bisphenol‐A based epoxy to understand how both the liquid crystalline structure and the crosslink density affect fracture toughness. For the liquid crystalline epoxy, the liquid crystalline domain size decreased with increasing temperature of cure and away from the stoichiometric formulation. Quantitative fractography showed that there is a competition between the liquid crystalline domain structure and the stoichiometry in determining the fracture toughness. At some cure conditions the effect of the domains is dominant. When the cure conditions are adjusted to reduce the domain size, the domains become too small to affect the fracture toughness, and thus the effect of the stoichiometry is dominant. The result is that the formation of liquid crystalline structure only increases the fracture toughness relative to that of a traditional epoxy at and near the stoichiometric formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.