Abstract

The effects of Fe stoichiometry on hydrogen embrittlement and hydrogen diffusion in ordered Ni3Fe intermetallics were investigated. The experimental results show that the ordered Ni3Fe alloy with the normal stoichiometry has the lowest mechanical property, the highest susceptibility to hydrogen, and the highest ability of catalytic reaction. The mechanical properties, the susceptibility to hydrogen embrittlement, and the amount of adsorbed hydrogen of the ordered Ni3Fe alloy are dependent of degree of order of the alloy. The apparent hydrogen diffusion coefficient of the ordered Ni3Fe alloy is independent on degree of order of the alloy but depends on Fe stoichiometry. The activation energy of hydrogen diffusion decreased linearly with Fe stoichiometry for the ordered Ni3Fe alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.