Abstract

BackgroundWhen transcranial magnetic stimulation (TMS) is delivered close to the lateral aspects of the head, large-amplitude (∼10–1000 μV) biphasic electroencephalographic (EEG) deflections, peaking at around 4–10 and 8–20 ms, appear. ObjectiveTo characterize the spatiotemporal features of these artifacts, to quantify the effect of stimulus parameters on them, and thus, to study the feasibility of different measurement procedures to decrease the artifacts online. Furthermore, to show that these deflections, when measured with a sample-and-hold system, mainly result from excitation of cranial muscles. MethodsThree subjects received TMS to 16 sites over the left hemisphere. TMS-compatible EEG was recorded simultaneously. Four other subjects received TMS to M1 with different coil rotation and tilt angles and stimulation intensities. We also stimulated a conductive phantom and recorded simultaneous EEG to exclude the possibility of residual electromagnetic artifacts. ResultsThe artifacts were largest when the stimulator was placed above cranial muscles, whereas stimulation of relatively central sites far from the muscles produced muscle artifact-free data. The laterally situated EEG channels were most severely contaminated. The artifacts were significantly reduced when reducing the intensity or when tilting or rotating the coil so that coil wings moved further away from the temporal muscle, while brain responses remained visible. Stimulation of the phantom did not produce such large-amplitude biphasic artifacts. ConclusionAltering the stimulation parameters can reduce the described artifact, while brain responses can still be recorded. The early, laterally appearing, large biphasic TMS-evoked EEG deflections recorded with a sample-and-hold system are caused by cranial muscle activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.