Abstract

ObjectiveSpread of excitation (SOE) in cochlear implants (CI) is a measure linked to the specificity of the electrode-neuron interface. The SOE can be estimated objectively by electrically evoked compound action potential (eCAP) measurements, recorded with the forward-masking paradigm in CI recipients. The eCAP amplitude can be plotted as a function of the roving masker, resulting in a spatial forward masking (SFM) curve. The eCAP amplitudes presented in the SFM curves, however, reflect an interaction between a masker and probe stimulus, making the SFM curves less reliable for examining SOE effects at the level of individual electrode contacts. To counter this, our previously published deconvolution method estimates the SOE at the electrode level by deconvolving the SFM curves (Biesheuvel et al., 2016). The aim of this study was to investigate the effect of stimulus level on the SOE of individual electrode contacts by using SFM curves analyzed with our deconvolution method. DesignFollowing the deconvolution method, theoretical SFM curves were calculated by the convolution of parameterized excitation density profiles (EDP) attributable to masker and probe stimuli. These SFM curves were subsequently fitted to SFM curves from CI recipients by iteratively adjusting the EDPs. We first improved the EDP parameterization to account for stimulus-level effects and validated this updated parameterization by comparing the EDPs to simulated excitation density profiles (sEDP) from our computational model of the human cochlea. Secondly, we analyzed SFM curves recorded with varying probe stimulus level in 24 patients, all implanted with a HiFocus Mid-Scala electrode array. With the deconvolution method extended to account for stimulus level effects, the SFM curves measured with varying probe stimulus levels were converted into EDPs to elucidate the effects of stimulus level on the SOE. ResultsThe updated EDP parameterization was in good agreement with the sEDPs from the computational model. Using the extended deconvolution method, we found that higher stimulus levels caused significant widening of EDPs (p < 0.001). The stimulus level also affected the EDP amplitude (p < 0.001) and the center of excitation (p < 0.05). Concerning the raw SFM curves, an increase in current level led to higher SFM curve amplitudes (p < 0.001), while the width of the SFM curves did not change significantly (p = 0.62). ConclusionThe extended deconvolution method enabled us to study the effect of stimulus level on excitation areas in an objective way, as the EDP parameterization was in good agreement with sEDPs from our computational model. The analysis of SFM curves provided new insights into the effect of the stimulus level on SOE. We found that the EDPs, and therefore the SOE, mainly became wider when the stimulus level increased. Lastly, the comparison of the EDP parameterization with simulations in our computation model provided new insights about the validity of the deconvolution method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call