Abstract

During infant feeding, the nipple is an important source of sensory information that affects motor outputs, including ones dealing with compression of the nipple, suction, milk bolus movement, and swallowing. Despite known differences in behavior across commercially available nipples, little is known about the in vivo effects of nipple property variation. Here we quantify the effect of differences in nipple stiffness and hole size on an easily measured metric representing infant feeding behavior: nipple compression. We bottle-fed 7-day old infant pigs (n = 6) on four custom fabricated silicone nipples. We recorded live X-ray fluoroscopic imaging data of feeding on nipples of two levels of hardness/stiffness and two hole sizes. We tested for differences in nipple compression at the nipple's maximum compression across different nipple types using a mixed model analysis of variance. Stiffer nipples and those with smaller holes were compressed less than compliant nipples and nipples with larger holes (p < 0.001). We also estimated the force applied on the nipple during feeding and found that more force was applied to the compliant nipple with disproportionately larger strains. Our results suggest that infant pigs' nipple compression depends on material type and hole size, which is likely detected by the infant pigs' initial assessment of compressibility and flow. By isolating nipple properties, we demonstrated a relationship between properties and suckling behavior. Our results suggest that sensory information affects feeding behaviors and may also inform clinical treatment of poor feeding performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.