Abstract

The effects of three kinds of sterols (cholesterol, β-sitosterol and ergosterol) on the stability, microstructure and membrane properties of soybean and egg yolk lecithin liposomes were investigated by light scattering, transmission electron microscope (TEM), atomic force microscope (AFM), fluorescence and Fourier transform infrared spectroscopy (FTIR). The vesicle size of cholesterol or β-sitosterol incorporated liposomes was higher than that of the control and ergosterol incorporated ones, while the zeta-potential was similar when the same lecithin was used. Due to the excellent emulsifying capacity, Tween-80 was introduced into the system and which could obviously maintain the liposomal vesicle size in fetal bovine serum. According to TEM and AFM, the phenomena of membrane fusion and deformation were observed respectively in ergosterol-incorporated liposomes. Results of fluorescence probe spectra revealed the most compact membrane structure was found in cholesterol-incorporated liposomes, which was in accordance with the strongest intermolecular interaction in bilayers obtained by FTIR results. Conversely, the membrane of ergosterol-incorporated liposomes was the most fragile and fluid, which was also identified with the lowest physical stability obtained by Turbiscan. These results systematically illustrated the relationship between the structure of sterols and the liposomal membrane stability, and provided some meaningful information on the choice of sterols and lecithin in preparation of liposomes for different purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.