Abstract
The cytosolic calcium concentration is regulated by calcium-processing proteins such as transient receptor potential cation channel subfamily V member 5 (TRPV5), TRPV6, sodium-calcium exchanger 1 (NCX1), and plasma membrane Ca2+ ATPase 1 (PMCA1). Those calcium-processing proteins are important for physiological functions in the brain. The effects of steroid hormones on calcium-processing protein expressions in the brains are unknown. Thus, the effects of steroid hormones on the distribution, localization, and expressions of calcium-processing proteins in the brain were analyzed. Immature female rats were injected with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182,780 and RU486). We found that TRPV5 and TRPV6 proteins were highly expressed in the cerebral cortex (CT), hypothalamus (HY), and brain stem (BS) compared to that in the olfactory bulb (OB) and cerebellum (CB). Also, the NCX1 protein was highly expressed in CT and BS compared to that in OB, HY, and CB, and PMCA1 protein was highly expressed in CT compared to that in other brain regions. Furthermore, expression levels of TRPV5, TRPV6, NCX1, and PMCA1 proteins were regulated by E2, P4, and/or DEX in the CT and HY. In summary, calcium-processing proteins are widely expressed in the immature rat brain, and expressions of calcium-processing proteins in CT and HY indicated that they may regulate by E2, P4, and/or DEX and can be attenuated by antagonist treatment. These results indicate that steroid hormone regulation of TRPV5, TRPV6, NCX1, and PMCA1 proteins may serve as a critical regulator of cytosolic calcium absorption and release in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.