Abstract

This study aimed to investigate the effect of steam cooking on the proteolysis of Pacific oysters (Crassostrea gigas) using the simulated oral-gastrointestinal digestion model and a NCM460 cell monolayer. Steam cooking changed the peptide profile of the digests of oysters considerably and induced more thorough hydrolysis. However, the heat-stable allergen, Cra g 1, still had remnant fragments in the intestinal phase, which could be allergenic epitopes. Two regions of Cra g 1 (residues 224–228 and 245–248) were digestion-tolerant. Furthermore, more oligopeptides were derived from raw proteins than from steamed proteins. After molecular docking and in vitro determination, six novel angiotensin I-converting enzyme inhibitory (ACEi) peptides were finally identified in the hydrolysates (WIS, WLS, LSL, SGPF, LGPI, and IGLP). Among them, LSL exhibited the highest ACEi activity (IC50 = 107.17 nM). Our findings provide supportive information on the effective utilization of oyster proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.