Abstract
Pore pressure changes due to fluid injection or withdrawal alter the rock stresses, which may potentially induce seismic events. Activities that have been associated with induced seismicity include geothermal energy production, subsurface gas storage, and natural gas production. Physics-based models are required to gain insight in the processes that lead to induced seismicity. When computing induced stresses with such models, a commonly made simplification is the assumption of uniform pressure changes across the entire reservoir. In reality, pressure gradients arise due to fluid production or injection. Here, we assess the effect of non-uniform pressure fields under steady-state flow conditions on induced stresses. We employ (semi-)analytical techniques to compute the corresponding pressure field and fault stresses. We are particularly interested in reservoirs with displaced faults (i.e., cases with nonzero fault offset), as shear stresses tend to concentrate at the reservoir corners along the faults. The stress profile along the fault becomes asymmetric under steady-state flow. The effect of fluid flow on fault stresses is larger in case of injection than in case of depletion. Injection with up-dip flow results in increased zones of fault slip near the bottom of the reservoir, while injection with down-dip flow results in increased slip near the top of the reservoir. The significance of steady-state flow on induced stresses can be estimated from the ratio of the average pressure change along the fault and the applied pressure gradient. The effect of steady-state flow is most relevant at the start of production or injection and diminishes with time. Thus, the effect of steady-state flow is only expected to be relevant when initially critically stressed faults are present. For non-critically stressed faults, the assumption of uniform depletion or injection is expected to be reasonable. An order-of-magnitude estimate of the effect of steady-state flow across displaced faults in the Groningen natural gas reservoir shows that the effect on fault stresses is probably negligible. A similar estimate of the effect in typical low-enthalpy geothermal doublets indicates that steady-state flow may possibly play a small role, in particular close to the injector. Nevertheless, site-specific assessments are necessary to quantify the effect in greater detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.