Abstract

For a quantum system interacting with its environment, the role of state preparation is nontrivial. The reason is that before the state preparation procedure, the system and the environment are correlated. Consequently, the state preparation procedure (which acts on the system) indirectly influences the state of the environment depending on the state preparation. In this paper, we use an experimentally realizable model describing a collection of N two-level atoms coupled to a common environment to investigate the influence of the state preparation procedure. We show that the dynamical map describing the evolution of the open quantum system can depend appreciably on the state preparation procedure. Moreover, this effect can be enhanced by increasing N. Our results should be useful for quantum control and quantum tomography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.