Abstract

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.