Abstract

The batch system investigation explored the effect of Sr2+ and Fe3+ cations and the stirring speed on the characteristics of precipitated barium sulfate. A series of experiments were conducted to evaluate the rate of barium sulfate precipitation in laboratory equipment from brines containing barium ions (3500 ppm) and varying amounts of Sr2+ and Fe3+ ions (10 and 20 ppm). Kinetic analysis was also performed to explore how stirring speeds (240 and 480 rpm) affect barium sulfate scales' crystallization by increasing the stirring speed and promoting Sr2+ and Fe3+-cation solubility while decreasing the precipitation rate. All solid crystals obtained were mostly pure barite, as the X-ray diffraction (XRD) method confirmed. The SEM micrograph of barite morphology revealed particles with tablet-shaped crystals 2 to 5 nm in size. With the presence of Sr2+ and Fe3+-cation, the shape of barium sulfate was modified into spherical tablets or flower-like clusters of tablets. Meanwhile, the morphological changes could result from increased stirring rates. Moreover, the kinetic results yielded a general reaction rate equation that might be used to estimate barium sulfate deposition in pipelines for various brine, supersaturation, and mixing time durations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.