Abstract

There are spin-orbit interaction and spin-spin interaction in a generic post-Newtonian Lagrangian formulation of comparable mass spinning compact binaries. The spin-orbit coupling or the spin-spin coupling plays a quite important role in changing the evolution of the system and may sometime cause chaotic behavior. How do the two types of couplings exert together any influences on chaos in this formulation? To answer it, we simply take the Lagrangian formulation of a special binary system, including the Newtonian term and the leading-order spin-orbit and spin-spin couplings. The key to this question can be found from a Hamiltonian formulation that is completely identical to the Lagrangian formulation. If the Lagrangian does not include the spin-spin coupling, its equivalent Hamiltonian has an additional term (i.e. the next-order spin-spin coupling) as well as those terms of the Lagrangian. The spin-spin coupling rather than the spin-orbit coupling makes the Hamiltonian typically nonintegrable and probably chaotic when two objects spin. When the leading-order spin-spin coupling is also added to the Lagrangian, it still appears in the Hamiltonian. In this sense, the total Hamiltonian contains the leading-order spin-spin coupling and the next-order spin-spin coupling, which have different signs. Therefore, the chaos resulting from the spin-spin interaction in the Legrangian formulations is somewhat weakened by the spin-orbit coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call