Abstract

BackgroundHigh-velocity low-amplitude (HVLA) spinal manipulation is commonly used in the treatment of spinal pain syndromes. The mechanisms by which HVLA-manipulation might reduce spinal pain are not well understood, but often assumed to relate to the reduction of biomechanical dysfunction. It is also possible however, that HVLA-manipulation involves a segmental or generalized inhibitory effect on nociception, irrespective of biomechanical function. In the current study it was investigated whether a local analgesic effect of HVLA-manipulation on deep muscle pain could be detected, in healthy individuals.Methods and materialsLocal, para-spinal muscle pain was induced by injection of 0.5 ml sterile, hyper-tonic saline on two separate occasions 1 week apart. Immediately following the injection, treatment was administered as either a) HVLA-manipulation or b) placebo treatment, in a randomized cross-over design. Both interventions were conducted by an experienced chiropractor with minimum 6 years of clinical experience. Participants and the researcher collecting data were blinded to the treatment allocation. Pain scores following saline injection were measured by computerized visual analogue pain scale (VAS) (0-100 VAS, 1 Hz) and summarized as a) Pain duration, b) Maximum VAS, c) Time to maximum VAS and d) Summarized VAS (area under the curve). Data analysis was performed as two-way analysis of variance with treatment allocation and session number as explanatory variables.ResultsTwenty-nine healthy adults (mean age 24.5 years) participated, 13 women and 16 men. Complete data was available for 28 participants. Analysis of variance revealed no statistically significant difference between active and placebo manipulation on any of the four pain measures.ConclusionThe current findings do not support the theory that HVLA-manipulation has a non-specific, reflex-mediated local or generalized analgesic effect on experimentally induced deep muscle pain. This in turn suggests, that any clinical analgesic effect of HVLA-manipulation is likely related to the amelioration of a pre-existing painful problem, such as reduction of biomechanical dysfunction.

Highlights

  • High-velocity low-amplitude (HVLA) spinal manipulation is commonly used in the treatment of spinal pain syndromes

  • The current findings do not support the theory that HVLA-manipulation has a non-specific, reflex-mediated local or generalized analgesic effect on experimentally induced deep muscle pain. This in turn suggests, that any clinical analgesic effect of HVLA-manipulation is likely related to the amelioration of a pre-existing painful problem, such as reduction of biomechanical dysfunction

  • It is commonly assumed that when pain arises from biomechanical dysfunction, spinal manipulation may affect pain relief through the reduction of such

Read more

Summary

Introduction

High-velocity low-amplitude (HVLA) spinal manipulation is commonly used in the treatment of spinal pain syndromes. The mechanisms by which HVLA-manipulation might reduce spinal pain are not well understood, but often assumed to relate to the reduction of biomechanical dysfunction. Spinal manipulation is commonly used in an effort to alleviate musculoskeletal pain, but the exact mechanisms by which such treatments can reduce pain are not well understood It is commonly assumed that when pain arises from biomechanical dysfunction, spinal manipulation may affect pain relief through the reduction of such. A pragmatic solution which has been suggested, is a trial of a few treatments to assess the potential benefit of further spinal manipulation for a given patient [4, 5] This is perfectly sensible, assuming that pain relief with 2–4 such treatments indicates reduction of some underlying painful mechanical lesion or dysfunction. In other words: If spinal manipulation has substantial local or regional, non-specific analgesic effects irrespective of the cause of pain, such treatment could potentially obfuscate serious pathology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.