Abstract
Spin polarization effects play an important role in the theory of isotropic hyperfine interactions for aromatic protons. The spin polarization gives rise to significant isotropic proton hyperfine interactions--spin-dependent one-electron properties--smaller than 0 MHz and the effect has been theoretically described [H. M. McConnell and D. B. J. Chesnut, Chem. Phys. 28, 107 (1958)]. The influence of spin polarization on the zero field splitting parameters, which are spin-dependent two-electron properties, has not been clearly identified yet. A phenomenological equation is proposed here for the contribution of spin polarization to the zero field splitting parameter D in analogy to McConnell's equation for hyperfine interactions. The presence of the effect is demonstrated in a series of calculations on polyacenes in the triplet state and turns out to be responsible for up to 50% of the D parameter in the case of naphthalene! It is found that spin-unrestricted single-determinant methods, including the widely used density functional theory methods, do not accurately reproduce the two-electron reduced electron density required for the evaluation of two-electron spin-dependent properties. For the accurate calculation of zero field splitting parameters by quantum chemical methods, it thus seems necessary to resort to correlated ab initio methods which do not give rise to spin contamination and which do provide an accurate description of the two-electron reduced electron density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.