Abstract

Combined application of cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) technique reveals a complicated interplay between the adsorption of ammonium and lower molecular weight tetraalkyl ammonium cations and desorption of Cl(-) anions inside carbon micropores at low surface charge densities, which results in failure of their permselectivity. Higher negative surface charge densities induce complete exclusion (desorption) of the Cl(-) co-ions, which imparts purely permselective behavior on the carbon micropores. The second fundamental effect discovered herein relates to the dominant role of anion desorption (as compared to cation adsorption), that is, overwhelming failure of permselectivity extends to high negative charge densities of the electrode in the presence of bulky tetraalkyl ammonium cations, which tend to be confined in the micropores of the carbon. The results obtained are important for advancement of high power density carbon-based supercapacitors, nanofiltration technologies with porous carbon membranes, and studies of ionic transport across biological membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.