Abstract

There are many conditions in which identification proceeds faster for the global form of a hierarchical pattern than for it's local parts. Since the global form usually contains more lower spatial frequencies than do the local forms, it has frequently been suggested that the higher transmission rate of low spatial frequencies is responsible for the global advantage. There are also functional hemispheric differences. While the right hemisphere is better at processing global information, the left hemisphere has an advantage with respect to local information. In accordance with the spatial-frequency hypothesis, it has been speculated that this difference is due to a differential capacity of the hemispheres for processing low and high spatial frequencies. To test whether low spatial frequencies were responsible for the global advantage and/or for the observed hemispheric differences, two experiments were carried out with unfiltered and highpass-filtered compound-letter stimuli presented at the left, right, or center visual field. The first experiment, in which the target level was randomized in each trial block, revealed that low spatial frequencies were not necessary for either global advantage or for hemispheric differences. Highpass filtering merely increased the response times. In the second experiment, the target level was held constant in each block. This generally increased the speed of responding and produced interactions between filtering and global-local processing. It was concluded that both sensory and attentional or control mechanisms were responsible for global precedence and that the hemispheres differed with respect to the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call