Abstract

Background and objectiveThis study was designed to investigate heat accumulation and bone thermal necrosis for various distances between holes and time delays between drillings.MethodsThe tests were performed at three distances (6, 12, 16 mm) and three time delays: 0, 5 and 10 s. To examine the efficiency of coolants, CO2 coolant was also tested in addition to two common cooling modes in bone drilling.ResultsThe main results were the trend of temperature–time graph, maximum temperature at drilling site, temperature distribution on the surface of drilling site, temperature durability and returning time. The effect of lateral drillings on the initial hole was notable in drilling at a distance of 6 mm without cooling. This effect did not disappear even by increasing the time delay up to 10 s. The results obtained for drilling with normal saline coolant were not sufficiently acceptable due to the manual and non-uniform cooling process as well as the relative obstruction of the chips exit path. Generally, drillings with two common cooling modes, even when the distances between holes and time delays between drillings were controlled, did not yield all favorable conditions for preventing bone thermal necrosis.ConclusionBone drilling using CO2 coolant eliminates the risk of bone thermal necrosis completely even in cases that the distances between holes in plates or implants are 6 mm and there is no time delay between drillings. These results can be especially useful in emergency orthopedic surgeries and for designing the location of screw holes in implants and plates.

Highlights

  • Background and objectiveThis study was designed to investigate heat accumulation and bone thermal necrosis for various distances between holes and time delays between drillings

  • The present study investigates these effects and due to the importance of coolants in reducing the risk of bone thermal necrosis during bone drilling, compares the efficacy of internal gas coolants with that of two cooling modes commonly used in operation rooms with the aim of improving the efficacy of orthopedic surgeries

  • The results show that the effect of lateral drillings without cooling on the trend of temperature–time graph of initial hole is considerable at the distance of 6 mm (Fig. 2a) and even raising the time delay between drillings to 10 s cannot eliminate this effect at this distance (Fig. 4a)

Read more

Summary

Introduction

Background and objectiveThis study was designed to investigate heat accumulation and bone thermal necrosis for various distances between holes and time delays between drillings. Due to the low amount of this coefficient, heat remains at the drilling site during bone drilling and leads to local temperature increase and changes in the nature of alkaline phosphatase in bone [10, 11]. This provides the conditions for thermal necrosis, death of bone cells, decrease in mechanical strength of the drilling site, possible damages to the peripheral nerves and vessels at drilling site, and postoperation complications [12,13,14,15]. Investigating the phenomenon “thermal necrosis” during bone drilling is of great importance and numerous studies have been done in this regard in the past

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.