Abstract

Experimental results for the pressure-driven membrane separation of cyclic hydrocarbons (1,3-cyclohexadiene, cyclohexene, and cyclohexane) from dilute binary aqueous solution using asymmetric cellulose acetate membranes are reported here. In these experiments, total solution fluxes are significantly lower than pure water fluxes at the same applied pressure; this flux reduction is attributed to strong solute—membrane affinity rather than to the osmotic pressure of either the bulk retentate or the boundary layer. An empirical parameter, Z, is used to describe flux reduction. A theoretically based friction parameter, B, is derived assuming the membrane can be represented as an ideal, finely porous membrane; this parameter indicates the influence of solute—membrane affinity on flow through the pores of the membrane. Both the empirical parameter Z and the theoretically based parameter B relate flux reduction to concentrations in the system. Both Z and B increase as solute—membrane affinity increases and decrease as membrane pore size increases. It is concluded that both the empirical flux reduction parameter, Z, and the theoretically based friction parameter, B, indicate the same system properties: solute—membrane affinity and membrane pore size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call