Abstract

The emerging portable device and electrical vehicle require safe, portable, and high-power energy sources which may be supplied by lithium-ion battery (LIB). The existing carbon anode exhibits several issues in terms of safety such as volume expansion and formation of solid electrolyte interphase (SEI) which can be overcome by applying Li4Ti5O12 (LTO) as an anode. However, the low electronic and ionic conductivity are the main bottlenecks of LTO. This research focuses on synthesizing LTO using TiO2 synthesized through the sol-gel method. Furthermore, the effect of TiO2 crystalline size will be discussed accordingly. The crystalline size of TiO2 was tailored by applying calcination temperature at 300 °C, 400 °C, and 500 °C and was heated for 6 h. The crystallite size shown by XRD patterns was 8.01 nm, 13.82 nm, and 27.01 nm, respectively. The best electrochemical properties were exhibited by LTO 300 showing the initial specific capacity of 164 mAh g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.