Abstract

We aimed to investigate the water use strategies and the responses to water shortages in Glycyrrhiza uralensis, which is a dominant species in the desert steppe. Water stress gradients included control, mild, moderate, and severe. The time intervals were 15, 30, 45, and 60 d. Our study suggested that with the aggravation of water stress intensity, the total biomass of Glycyrrhiza uralensis gradually decreased and allometric growth was preferred to underground biomass accumulation. From 30 d and mild to moderate water stress, the water potential (WP) of leaves decreased considerably compared to the CK. The relative water content (EWC) decreased over time and had a narrow range of variation. Proline (PR) was continuously increased, then declined at 45–60 d under severe and more severe water stress. The δ13C values increased in all organs, showed roots > stems > leaves. The net photosynthetic rate (Pn) and transpiration rate (Tr) decreased to varying degrees. The instantaneous water use efficiency (WUEi) and limiting value of stomata (Ls) increased continuously at first and decreased under severe water stress. Meanwhile, severe water stress triggered the most significant changes in chloroplast and guard cell morphology. In summary, Glycyrrhiza uralensis could maintain water content and turgor pressure under water stress, promote root biomass accumulation, and improve water use efficiency, a water-conservation strategy indicating a mechanism both avoidable dehydration and tolerable drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call