Abstract

This paper presents a theoretical approach in which a Dalton-type mass transfer equation is used to predict the evaporative fluxes from nonvegetated soil surfaces. Soil evaporation tests were conducted in the laboratory on three different soil samples of Beaver Creek sand, Custom silt, and Regina clay. The soil surfaces were saturated and allowed to evaporate to a completely air-dried state. The actual evaporation rate for each soil surface was measured along with the potential evaporation rate for an adjacent water surface. The ratio of actual evaporation to potential evaporation or normalized soil evaporation was then evaluated with respect to drying time, soil-water content, and soil suction. The value of the normalized soil evaporation was found to be approximately equal to unity for all soils until the total suction in the soil surfaces reached approximately 3000 kPa. The rate of actual soil evaporation was observed to decline when the total suction exceeded 3000 kPa. A relationship between the actual evaporation rate and total suction was found to exist for all three soil types which appears to be unique and independent of soil texture, drying time, and water content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call