Abstract

Poor soil physical conditions such as low hydraulic conductivity can limit salt depletion from surface soil. Altering the pore system by addition of organic and inorganic amendments may improve salt leaching as a reclamation strategy. Column studies were conducted to investigate salt leaching in amended and non-amended soil profiles. A one-dimensional water and solute transport model (HYDRUS-1D) was also assessed for its applicability to simulate salt leaching for amendment strategy. Columns of length 300mm were filled with saline-sodic soil at the lower end (100–300mm) and then covered with soil amended with 40% (wt/wt) fine sand and 20% (wt/wt) wood chips, separately. A control column was filled with saline-sodic soil only. One rainfall scenario typical for a location in south-west Queensland (Australia) was applied to the columns. Water potentials were monitored using tensiometers installed at three depths: 35, 120 and 250mm. The concentrations of individual cations (Na+, Ca2+, Mg2+ and K+), electrical conductivity and sodium adsorption ratio of the soil solutions were also monitored for the investigated depths. A reduction in surface salinity (up to 28.5%) was observed in the amended soil profiles. This study indicated that the addition of wood chips to surface soil improved salt leaching under the tested conditions. The simulation successfully predicted both hydrology and chemistry of the columns. This study also concluded that HYDRUS-1D is a powerful tool to simulate salt leaching in the amended soil profiles, and can be applied to predict the success of amendment strategy under natural climatic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call