Abstract
Three landraces of bambara groundnut (Vigna subterranea (L.) Verdc.) were grown as crop stands in controlled environment glasshouses at the Tropical Crops Research Unit, University of Nottingham, in 1995. Two soil moisture treatments were imposed: irrigated to 90% field capacity each week and irrigated to 60% field capacity until establishment (27 days after sowing) with no further irrigation. Seasonal mean fractional interception varied between 0·20–0·37 for the droughted treatments and 0·62–0·74 for the irrigated treatments, resulting in cumulative intercepted radiation of 228–350 MJ/m2 and 662–794 MJ/m2, respectively. The maximum total dry matter (DM) produced was 5·8 t/ha at final harvest (145 days after sowing) with a pod yield of 2·7 t/ha. Under moisture stress there was little difference in DM production between landraces, with the highest total DM of 1·1 t/ha and a pod yield of 0·05 t/ha, representing a harvest index of 0·05 compared with an average of 0·46 for the irrigated treatments. The conversion coefficient was reduced from 1·00 under irrigation to 0·51 g DM/MJ radiation intercepted by soil moisture stress. Two of the landraces showed adaptive mechanisms to avoid drought; these are discussed in relation to maximizing seasonal radiation interception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.