Abstract

Differences in plant growth arising from differences in aggregate size in the seedbed are normally atributed to limitations in nutrient or water supply during the early growth period. This study was initiated to determine if these were the only mechanisms by which aggregate size influences plant response. Four different aggregate size fractions (less than 1.6 mm, 1.6 to 3.2 mm, 3.2 to 6.4 mm and 6.4 to 12.8 mm diameter) were sieved from a silt loam soil. Nutrients were added to the soil and maize was grown in the aggregates for eighteen days after seedling emergence. Soil matric potential was maintained between — 3 and −20 kPa. Shoot dry weight declined by 18% as aggregate size increased from less than 1.6 mm to 1.6–3.2 mm. There was little further decline as aggregate size increased to 6.4–12.8 mm. Final leaf area showed a similar decline. The availability of nutrients or water were not limiting. Total root length in the coarsest aggregate system was less than 60% of that in the finest system. Main axes of seminal and nodal roots were longer in the coarser aggregate systems, the length of primary laterals was not affected, and length of secondary laterals was lower in the coarser systems. A greater proportion of the roots penetrated the larger aggregates than the smaller aggregates; however, the larger aggregates offered greater resistance to penetration by a rigid micropenetrometer (150 μ diameter probe). Diameter of the main axes roots were greatest in the largest two aggregate fractions. it is speculated that a combination of increased endogenous ethylene in roots in the finest aggregate system due to entrapment by water and increased mechanical resistance in the coarsest aggregate system accounts for the observed effects on root norphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call