Abstract
Abstract—Sodium selenite, which is one of the most common selenium compounds, is considered a potential anticancer agent that can decrease cell viability; this compound is present in many types of malignant cells. Oxidative stress contributes to malignant transformation, in particular, by inducing prolonged endoplasmic reticulum stress due to a dramatic increase in free-radical levels. Selenoproteins are oxidoreductases that exhibit antioxidant activity due to the presence of selenium; thus, the need occurs to investigate the role of selenoproteins in the regulation of carcinogenic processes, with a focus on selenoproteins associated with the endoplasmic reticulum, which is an organelle with a high level of redox activity. Almost one-third of the currently known human selenoproteins are located in the endoplasmic reticulum; some of these have been shown to participate in the regulation of processes associated with stress of the endoplasmic reticulum in different types of tumor cells. In this work, changes in the expression patterns of endoplasmic reticulum-resident selenoprotein genes, as well as of key genes involved in the regulation of endoplasmic reticulum stress, were studied in human fibrosarcoma cells exposed to sodium selenite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.