Abstract

The benefits of different silicic concentrations on chondrogenesis of mesenchymal stem cell (MSC) are unclear. Here an in vitro scaffoldless model was used to determine the impact of different silicic concentrations on the three-dimensional chondrogenesis of MSCs. Sodium metasilicate solutions were used as the source of silica, and were added in the chondrogenic medium and replenished every 3 days. The thickness and area of cartilage; the expression of collagen II, aggrecan, and the collagen type II/I ratio; the glycosaminoglycan and cell contents; and the tangent modulus of the constructs were all significantly higher in 100 and 200 ng/mL groups compared with those in 0 and 10 ng/mL groups. All the above parameters, as well as several mechanical parameters of cartilage constructs were highest in 200 ng/mL group. Thus, 200 ng/mL sodium metasilicate could promote the chondrogenic differentiation of MSCs and the mechanical and biochemical properties of the cartilage constructs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.