Abstract

The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call