Abstract

A first-principles method has been employed to determine the electronic, magnetic and structural characteristics of the full-Heusler alloys Fe2VAl with Sn doping. All the calculations were performed by using a computational code based on full-potential linearized augmented plane wave method called WIEN2k. The electron exchange–correlation is treated by the generalized gradient approximation within a scheme developed by Perdew, Burke and Ernzerhof (PBE-GGA). The electronic band structures of Fe2VAl1−xSnx (x = 0, 0.25, 0.50, 0.75) compounds show that the majority-spin (spin-up) exhibits a metallic characteristic, whereas the minority-spin (spin-dn) have an energy band gap. Our calculations predict that Fe2VAl1−xSnx compounds are half-metallic ferromagnets with an integer value of magnetic moment, 0, 1, 2, and 3 μB, respectively. Our findings suggest that these materials are potential candidates for manufacturing spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call