Abstract

Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call