Abstract
We study the effect of slow flow dynamics and slow invariant manifolds on the energy transfer and dissipation of a dissipative system of two linear oscillators coupled with an essential nonlinear oscillator with a mass much smaller than the masses of the linear oscillators. We calculate the slow flow of the system, the slow invariant manifold, the total energy of the system, and the energy that is stored in the nonlinear oscillator for different sets of the parameters and show that the bifurcations of the SIM and the dynamics of the slow flow play an important role in the energy transfer from the linear to the nonlinear oscillator and the rate of dissipation of the total energy of the initial system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.