Abstract
This paper aims to examine fiber type and fiber orientation’s effects on the interface bonding between steel and fiber-reinforced composites. To this end, fracture loads for modes I and II were experimentally determined. Three different composites were used: glass fibers/epoxy (GFRP), carbon fibers/epoxy (CFRP), and Kevlar fibers/epoxy (KFRP). Seven different fabric orientations were examined: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. End-notched flexure (ENF) and Double cantilever beam (DCB) tests were utilized to determine modes I and II fracture toughness, respectively. Results showed that fiber orientations and fiber types have significantly affected the interface bonding between the steel and fiber-reinforced composite. For both modes I and II tests, the CFRP/steel interface exhibited the highest toughness when comparing the different tested fabric types. However, when comparing the different tested fabric orientations for GFRP/Steel, the 0° GFRP/Steel interface had the maximum toughness for modes I and II tests. All steel-composite specimens tested have shown matrix, debonding, fiber breakage, delamination, and fiber kinking using the scanning electron microscopic technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.