Abstract

Achieving highly enriched single wall carbon nanotubes (SWNTs) is one of the major hurdles today because their chirality-dependent properties must be uniform and predictable for use in nanoscale electronics. Due to the unique wrapping and groove-binding mechanism, DNA has been demonstrated as a highly specific SWNT dispersion and fractionation agent, with its enrichment capabilities depending on the DNA sequence and length as well as the nanotube properties. Salmon genomic DNA (SaDNA) offers an inexpensive and scalable alternative to synthetic DNA. In this study, SaDNA enrichment capabilities were tested on SWNT separation with varying degrees of metallicity that were formulated from mixtures of commercial metallic (met-) and semiconducting (sem-) abundant SWNTs. The results herein demonstrate that the degree of metallicity of the SWNT sample has a significant effect on the SaDNA enrichment capabilities, and this effect is modeled based on deconvolution of the near-infrared (NIR) absorption spectra and verified with photoluminescence emission (PLE) measurements. Using molecular dynamics and circular dichroism, the preferential SaDNA mediated separation of the (6, 5) sem-tube is shown to be largely influenced by the presence of met-SWNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.