Abstract

The purpose of this study was to investigate the cooperative effects of simvastatin (SIM) and stromal cell-derived factor-1α (SDF-1α) on the osteogenic and migration capabilities of mesenchymal stem cells (MSCs), and construct a cell-free bone tissue engineering system comprising SIM, SDF-1α and scaffold. We found that 0.2 μm SIM significantly increased alkaline phosphatase activity (P < 0.05) of mouse bone marrow MSCs with no inhibition of cell proliferation, and enhanced the chemotactic capability of SDF-1α (P < 0.05). Next, we constructed a novel cell-free bone tissue engineering system using PLGA loaded with SIM and SDF-1α, and applied it in critical-sized calvarial defects in mice. New bone formation in the defect was evaluated by micro-CT, HE staining and immunohistochemistry. The results showed that PLGA loaded with SIM and SDF-1α promoted bone regeneration significantly more than controls. We investigated possible mechanisms, and showed that SDF-1α combined with SIM increased MSC migration and homing in vivo, promoted angiogenesis and enhanced the expression of BMP-2 in newly-formed bone tissue. In conclusion, SIM enhanced the chemotactic capability of SDF-1α and the cell-free bone tissue engineering system composed of SIM, SDF-1α and scaffold promoted bone regeneration in mouse critical-sized calvarial defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.