Abstract

MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on the surface of silicon like a forest, which is called “silicon nanowires arrays”. This structure can dramatically suppress both reflection and transmission at the wavelength range from 400 nm to near-infrared 1800 nm by increasing the propagation path of light. In this paper, ordered silicon nanowires arrays with a large area are prepared by wet chemical etching. It is demonstrated that the SiNWs (Silicon nanowires) arrays with different morphologies can be fabricated from monocrystalline silicon of a given orientation by changing silver-plating time. Excellent anti-reflection performance in broadband wavelengths and incident angle is obtained. The fabrication method and potential application of such SiNWs in the field of photoelectric detection have great value and can provide reference for further research in this field.

Highlights

  • The monocrystalline silicon has advantages of abundant reserves, mature technology, stable performance, less environmental pollution

  • It is demonstrated that the SiNWs (Silicon nanowires) arrays with different morphologies can be fabricated from monocrystalline silicon of a given orientation by changing silver-plating time

  • This paper introduces a new stable wet chemical etching method to fabricate silicon nanowires arrays

Read more

Summary

Introduction

The monocrystalline silicon has advantages of abundant reserves, mature technology, stable performance, less environmental pollution. It is compatible with modern semiconductor technology to develop semiconductor devices to the nanometer scale. SiNWs are one of the most promising nanostructured materials for fabrication of high-performance devices including field effect tubes, biosensors and energy conversion device with the advantage of less front surface reflection compared to monocrystalline silicon. The preparation of SiNWs and the research of their photoelectric properties are hot topics in the field of nanotechnology [1]. The controlled growth of SiNWs is the key for potential application, such as specified length, diameter, density and electrical properties

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.