Abstract

Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-015-0823-5) contains supplementary material, which is available to authorized users.

Highlights

  • Numerous complications are associated with the use of conventional anticancer drugs, including insolubility in water, rapid clearance, and lack of selectivity, resulting in non-specific toxicity regarding normal cells and insufficient dose of drug delivered to the cancer cells [1]

  • The influence of Silver nanoparticles (AgNPs) on glioblastoma multiforme (GBM) cells proliferation Examination of GBM cells revealed that the proliferative index (PI) in control untreated tumors ranged from 21.00 to 36.00% with a mean of 28.72% ± 0.85% (Figure 2A), which was in agreement with the results obtained for the placebo group

  • All changes caused by AgNPs administration led to a significant reduction of GBM cells in the M phase compared with cells from control and placebo groups (P ≤ 0.001)

Read more

Summary

Introduction

Numerous complications are associated with the use of conventional anticancer drugs, including insolubility in water, rapid clearance, and lack of selectivity, resulting in non-specific toxicity regarding normal cells and insufficient dose of drug delivered to the cancer cells [1]. Nanoparticles (NPs) exploit biological pathways to achieve payload delivery to cellular and intracellular targets, including transport across the blood-brain barrier (BBB). The ability of these carriers to overcome BBB appears to be enabled by receptor-mediated endocytosis through brain endothelial cells. Most studies focused on the efficacy of anticancer drugs in the treatment of GBM are conducted in vitro. Despite the fact that in vitro studies are characterized by simple methodology, this experimental model has important limiting factors, related mainly to the bioavailability and cell biodistribution of anticancer drugs. Tumor cells growing in such conditions lack the architectural and cellular complexity of in vivo tumors, so it is impossible to recreate the interaction between the tumor and its host [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.