Abstract

The silica/zeolite-A nanocomposite additive was loaded at different values (1 - 4% wt) into polyvinyl acetate matrix to improve its wood adhesive properties. The silica nanoparticles were prepared by calcination method using rice husk as source material. X-ray diffraction analysis, FTIR spectroscopy, and SEM techniques were used for the characterization of the nanocomposite. The thermal stability and adhesion properties of modified polyvinyl acetate were evaluated by thermogravimetric analysis (TGA) method and measuring the shear strength of wood joints respectively. According to the results, the addition of silica/zeolite-A nanocomposite into polyvinyl acetate in dry condition and elevated temperatures was led to the enhanced shear strength of wood joints. However, in wet conditions, improvement of shear strength which was obtained by the addition of silica/zeolite-A nanocomposite was lower than that of the dry condition. Additionally, the thermal stability of polyvinyl acetate was affected by silica/zeolite-A nanocomposite. Polyvinyl acetate containing silica/zeolite-A nanocomposite additive showed better stability in water with respect to the pristine polyvinyl acetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call