Abstract

Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiOx to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.