Abstract

Grit particles remaining on the substrate surface after grit blasting are generally considered to impair the thermal performance of thermal barrier coatings (TBCs). However, the specific mechanisms by which these particles degrade the multilayer structure of TBCs during thermal cycling have not yet been fully elucidated. In this study, the superalloy substrate was grit-blasted using various processing parameters, followed by the deposition of thermal barrier coatings (TBCs) consisting of a metallic bond coat (BC) and a ceramic top coat (TC). After thermal shock tests, local thinning or discontinuities in the thermally grown oxide (TGO) layer were observed in TBCs where large grit particles were embedded at the BC/substrate interface. Moreover, cracks originated at the concave positions of the TGO layer and propagated vertically towards BC; these cracks may be associated with additional stress imposed by the foreign grit particles during thermal cycling. At the BC/substrate interface, crack origins were observed in the vicinity of large grit particles (~50 μm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.