Abstract

Recent studies show that the atoms in high entropy alloys (HEAs) are not randomly distributed but have a certain short-range order (SRO). However, the study of the effect of SRO on Al0.3CoCrFeNi properties is insufficient. In this paper, the effect of SRO on the mechanical properties of Al0.3CoCrFeNi was investigated by molecular dynamics (MD). Melting/quenching and hybrid Monte Carlo (MC)/MD optimization were used to order the random distribution model. The effects of SRO on tensile and shear properties, stacking fault energy (SFE) and dislocation slip were comparatively analyzed and systematically discussed. The results show that the SRO inhibited the propagation of SFs and enhanced dislocation storage capacity. The ordering of the single crystals promoted the formation of deformation twins. The ordering of the polycrystals leads to martensite, BCC phase transformation, and activation of the sub-slip planes. SRO resulted in more severe SFE fluctuation, a more tortuous dislocation path, and a stronger pinning effect. The strength and toughness enhancement resulted from plane slip, multi-system slip, deformation twins, and nanoscale precipitates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.