Abstract

Mathematical models are potentially a valuable tool for the prediction of continuous gravity thickener operation. However, experience shows that existing mathematical models underestimate dewatering in thickeners for flocculated feed materials when predictions are made of either the underflow solids concentration for a given solids feed flux density or the maximum solids feed flux density achievable for a minimum underflow solids concentration set point. One reason postulated for this discrepancy is shear enhancement of sedimentation and bed dewatering as a result of aggregate densification. This process is not taken into account in conventional 1-D thickener models. A pilot scale column, operated at low bed heights without the addition of mechanical shear, produced results that compared well with 1-D model predictions. The effect of mechanical shear and/or greater bed height was to significantly enhance thickener performance relative to model predictions (as measured by underflow density or maximum solids flux density achievable for a nominated underflow density). An experimental method was developed that enabled shear to be incorporated into the suspension dewatering characterisation. The results suggest an order of magnitude increase in solid flux density can be expected under controlled shear conditions with polymer flocculated aggregates. The results also indicate that mechanical shear is not the only factor that can enhance dewatering, since higher beds, and hence longer residence times, also improve the achievable solids flux density. This is despite the fact that the thickener is operating in a regime that is predicted to be limited by the sediment permeability and not its compressibility. This suggests an additional mechanism must be at play in full scale operation and points a direction for further experimentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.