Abstract
In real application, the shape of the vortex generator has great influence on the heat transfer and flow resistance characteristics of tube bank fin heat exchanger. Therefore, the effect of the shape of the vortex generator on heat transfer performance of such heat exchanger should be considered. In this paper, the effect of three different shaped vortex generators (i.e. delta winglet, rectangular winglet and trapezoid winglet) on heat transfer intensity and secondary flow intensity of a circular tube bank fin heat exchanger was numerically studied. The results show that with increasing Re, overall average Nu and the non-dimensional secondary flow intensity Se m increase however friction factor f decreases. A corresponding relationship can be found between Nu and Se m, which indicates that the secondary flow intensity determines the heat transfer intensity in the fin-side channel of circular tube bank fin heat exchanger with different shaped vortex generators on the fin surfaces. Under the identical pumping power constrain, the optimal shape of the vortex generators is the delta winglet vortex generators for the studied cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.