Abstract

During the ascent phase of a maximal barbell back squat after an initial acceleration, a deceleration region occurs as the result of different biomechanical factors. This is known as the sticking region. However, whether this region is similar in the last repetition of different repetition maximums and if sex has an impact on biomechanics of this region are not known. Therefore, this study investigated the effect of sex (men/women) and repetition maximum (1-, 3-, 6-, and 10RM) on kinematics and surface electromyography around the sticking region. Twenty-six resistance-trained individuals comprising 13 men (body mass: 82.2 ± 8.7; age: 23.6 ± 1.9; height: 181.1 ± 6.5) and 13 women (body mass: 63.6 ± 6.6; age: 23.9 ± 4.5; height: 166.0 ± 4.5) participated in the study. The main findings were that women, in comparison to men, displayed larger trunk lean and lower hip extension angles in the sticking region, possibly due to different hip/knee extensor strength ratios. Moreover, an inverse relationship was discovered between repetition range and timing from V0 to Vmax2, in which lower repetition ranges (1- and 3RM) were shorter in Vmax2 compared to higher ranges (6- and 10RM). It was concluded that this occurrence is due to more moments of inertia in lower repetition ranges. Our findings suggest that both sex and repetition range might induce different requirements during the squat ascent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call